Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Based on the rate of change of its orbital period, PSR J2043+1711 has a substantial peculiar acceleration of 3.5 ± 0.8 mm s–1yr–1, which deviates from the acceleration predicted by equilibrium Milky Way (MW) models at a 4σlevel. The magnitude of the peculiar acceleration is too large to be explained by disequilibrium effects of the MW interacting with orbiting dwarf galaxies (∼1 mm s–1yr–1), and too small to be caused by period variations due to the pulsar being a redback. We identify and examine two plausible causes for the anomalous acceleration: a stellar flyby, and a long-period orbital companion. We identify a main-sequence star in Gaia DR3 and Pan-STARRS DR2 with the correct mass, distance, and on-sky position to potentially explain the observed peculiar acceleration. However, the star and the pulsar system have substantially different proper motions, indicating that they are not gravitationally bound. However, it is possible that this is an unrelated star that just happens to be located near J2043+1711 along our line of sight (chance probability of 1.6%). Therefore, we also constrain possible orbital parameters for a circumbinary companion in a hierarchical triple system with J2043+1711; the changes in the spindown rate of the pulsar are consistent with an outer object that has an orbital period of 60 kyr, a companion mass of 0.3M⊙(indicative of a white dwarf or low-mass star), and a semimajor axis of 1900 au. Continued timing and/or future faint optical observations of J2043+1711 may eventually allow us to differentiate between these scenarios.more » « lessFree, publicly-accessible full text available April 7, 2026
-
Abstract Pulsar timing array observations have found evidence for an isotropic gravitational-wave background with the Hellings–Downs angular correlations between pulsar pairs. This interpretation hinges on the measured shape of the angular correlations, which is predominantly quadrupolar under general relativity. Here we explore a more flexible parameterization: we expand the angular correlations into a sum of Legendre polynomials and use a Bayesian analysis to constrain their coefficients with the 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). When including Legendre polynomials with multipolesℓ≥ 2, we only find a significant signal in the quadrupole with an amplitude consistent with general relativity and nonzero at the ∼95% confidence level and a Bayes factor of 200. When we include multipolesℓ≤ 1, the Bayes factor evidence for quadrupole correlations decreases by more than an order of magnitude due to evidence for a monopolar signal at approximately 4 nHz, which has also been noted in previous analyses of the NANOGrav 15 yr data. Further work needs to be done in order to better characterize the properties of this monopolar signal and its effect on the evidence for quadrupolar angular correlations.more » « lessFree, publicly-accessible full text available May 16, 2026
-
Abstract Of the more than 3000 radio pulsars currently known, only ∼300 are in binary systems, and only five of these consist of young pulsars with massive nondegenerate companions. We present the discovery and initial timing, accomplished using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope, of the sixth such binary pulsar, PSR J2108+4516, a 0.577 s radio pulsar in a 269 day orbit of eccentricity 0.09 with a companion of minimum mass 11 M ⊙ . Notably, the pulsar undergoes periods of substantial eclipse, disappearing from the CHIME 400–800 MHz observing band for a large fraction of its orbit, and displays significant dispersion measure and scattering variations throughout its orbit, pointing to the possibility of a circumstellar disk or very dense stellar wind associated with the companion star. Subarcsecond resolution imaging with the Karl G. Jansky Very Large Array unambiguously demonstrates that the companion is a bright, V ≃ 11 OBe star, EM* UHA 138, located at a distance of 3.26(14) kpc. Archival optical observations of EM* UHA 138 approximately suggest a companion mass ranging from 17.5 M ⊙ < M c < 23 M ⊙ , in turn constraining the orbital inclination angle to 50.°3 ≲ i ≲ 58.°3. With further multiwavelength follow-up, PSR J2108+4516 promises to serve as another rare laboratory for the exploration of companion winds, circumstellar disks, and short-term evolution through extended-body orbital dynamics.more » « less
-
Abstract Evidence has emerged for a stochastic signal correlated among 67 pulsars within the 15 yr pulsar-timing data set compiled by the NANOGrav collaboration. Similar signals have been found in data from the European, Indian, Parkes, and Chinese pulsar timing arrays. This signal has been interpreted as indicative of the presence of a nanohertz stochastic gravitational-wave background (GWB). To explore the internal consistency of this result, we investigate how the recovered signal strength changes as we remove the pulsars one by one from the data set. We calculate the signal strength using the (noise-marginalized) optimal statistic, a frequentist metric designed to measure the correlated excess power in the residuals of the arrival times of the radio pulses. We identify several features emerging from this analysis that were initially unexpected. The significance of these features, however, can only be assessed by comparing the real data to synthetic data sets. After conducting identical analyses on simulated data sets, we do not find anything inconsistent with the presence of a stochastic GWB in the NANOGrav 15 yr data. The methodologies developed here can offer additional tools for application to future, more sensitive data sets. While this analysis provides an internal consistency check of the NANOGrav results, it does not eliminate the necessity for additional investigations that could identify potential systematics or uncover unmodeled physical phenomena in the data.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract Pulsar timing arrays (PTAs) are designed to detect low-frequency gravitational waves (GWs). GWs induce achromatic signals in PTA data, meaning that the timing delays do not depend on radio frequency. However, pulse arrival times are also affected by radio-frequency-dependent “chromatic” noise from sources such as dispersion measure (DM) and scattering delay variations. Furthermore, the characterization of GW signals may be influenced by the choice of chromatic noise model for each pulsar. To better understand this effect, we assess if and how different chromatic noise models affect the achromatic noise properties in each pulsar. The models we compare include existing DM models used by the North American Nanohertz Observatory for Gravitational waves (NANOGrav) and noise models used for the European PTA Data Release 2 (EPTA DR2). We perform this comparison using a subsample of six pulsars from the NANOGrav 15 yr data set, selecting the same six pulsars as from the EPTA DR2 six-pulsar data set. We find that the choice of chromatic noise model noticeably affects the achromatic noise properties of several pulsars. This is most dramatic for PSR J1713+0747, where the amplitude of its achromatic red noise lowers from to , and the spectral index broadens from to . We also compare each pulsar's noise properties with those inferred from the EPTA DR2, using the same models. From the discrepancies, we identify potential areas where the noise models could be improved. These results highlight the potential for custom chromatic noise models to improve PTA sensitivity to GWs.more » « less
-
Abstract Using Bayesian analyses we study the solar electron density with the NANOGrav 11 yr pulsar timing array (PTA) data set. Our model of the solar wind is incorporated into a global fit starting from pulse times of arrival. We introduce new tools developed for this global fit, including analytic expressions for solar electron column densities and open source models for the solar wind that port into existing PTA software. We perform an ab initio recovery of various solar wind model parameters. We then demonstrate the richness of information about the solar electron density, n E , that can be gleaned from PTA data, including higher order corrections to the simple 1/ r 2 model associated with a free-streaming wind (which are informative probes of coronal acceleration physics), quarterly binned measurements of n E and a continuous time-varying model for n E spanning approximately one solar cycle period. Finally, we discuss the importance of our model for chromatic noise mitigation in gravitational-wave analyses of pulsar timing data and the potential of developing synergies between sophisticated PTA solar electron density models and those developed by the solar physics community.more » « less
-
Abstract The cosmic merger history of supermassive black hole binaries (SMBHBs) is expected to produce a low-frequency gravitational wave background (GWB). Here we investigate how signs of the discrete nature of this GWB can manifest in pulsar timing arrays (PTAs) through excursions from, and breaks in, the expected power law of the GWB strain spectrum. To do this, we create a semianalytic SMBHB population model, fit to North American Nanohertz Observatory for Gravitational Waves (NANOGrav’s) 15 yr GWB amplitude, and with 1000 realizations, we study the populations’ characteristic strain and residual spectra. Comparing our models to the NANOGrav 15 yr spectrum, we find two interesting excursions from the power law. The first, at 2 nHz, is below our GWB realizations with ap-value significancep= 0.05–0.06 (≈1.8σ–1.9σ). The second, at 16 nHz, is above our GWB realizations withp= 0.04–0.15 (≈1.4σ–2.1σ). We explore the properties of a loud SMBHB that could cause such an excursion. Our simulations also show that the expected number of SMBHBs decreases by 3 orders of magnitude, from ∼106to ∼103, between 2 and 20 nHz. This causes a break in the strain spectrum as the stochasticity of the background breaks down at , consistent with predictions pre-dating GWB measurements. The diminished GWB signal from SMBHBs at frequencies above the 26 nHz break opens a window for PTAs to detect continuous GWs from individual SMBHBs or GWs from the early Universe.more » « less
-
Abstract The NANOGrav 15 yr data provide compelling evidence for a stochastic gravitational-wave (GW) background at nanohertz frequencies. The simplest model-independent approach to characterizing the frequency spectrum of this signal consists of a simple power-law fit involving two parameters: an amplitudeAand a spectral indexγ. In this Letter, we consider the next logical step beyond this minimal spectral model, allowing for arunning(i.e., logarithmic frequency dependence) of the spectral index, . We fit this running-power-law (RPL) model to the NANOGrav 15 yr data and perform a Bayesian model comparison with the minimal constant-power-law (CPL) model, which results in a 95% credible interval for the parameterβconsistent with no running, , and an inconclusive Bayes factor, . We thus conclude that, at present, the minimal CPL model still suffices to adequately describe the NANOGrav signal; however, future data sets may well lead to a measurement of nonzeroβ. Finally, we interpret the RPL model as a description of primordial GWs generated during cosmic inflation, which allows us to combine our results with upper limits from Big Bang nucleosynthesis, the cosmic microwave background, and LIGO–Virgo–KAGRA.more » « less
An official website of the United States government
